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A B S T R A C T   

Functional MRI has emerged as a powerful tool to assess the severity of Post-concussion syndrome (PCS) and to 
provide guidance for neuro-cognitive therapists during treatment. The next-generation functional neuro- 
cognitive imaging protocol (fNCI2) has been developed to provide this assessment. This paper covers the first 
step in the analysis process, the development of a rapidly re-trainable, machine-learning, brain parcellation tool. 
The use of a sufficiently deep U-Net architecture encompassing a small (39 × 39 × 39 voxel input, 27 × 27 × 27 
voxel output) sliding window to sample the entirety of the 3D image allows for the prediction of the entire image 
using only a single trained network. A large number of training, validating, and testing windows are thus 
generated from the 101 manually-labeled Mindboggle images, and full-image prediction is provided via a voxel- 
vote method using overlapping windows. Our method produces parcellated images that are highly consistent 
with standard atlas-based methods in under 3 min on a modern GPU, and the single network architecture allows 
for rapid retraining (<36 hr) as needed.   

1. Introduction 

Mild traumatic brain injury (mTBI) represents approximately 70 % 
to 90 % of traumatic brain injuries in the United States with an incidence 
of 600 in 100,000 people per year (Cassidy et al., 2004, Faul et al., 
2010). Though the terms mTBI and concussion are often used inter-
changeably, concussion represents a variety of mTBI characterized by 
the absence of structural brain damage, though clinical manifestations 
may be similar (McCrory et al., 2013). Concussive symptoms typically 
resolve in 7 to 10 days (sports-related concussions) or within 3 months 
(non-athletes) (McCrea et al., 2003). However, approximately 33 % of 
patients will have persistence of symptoms with 30 % of those patients 
meeting post-concussion syndrome (PCS) criteria 6 months out from 
time of injury (Mittenberg et al., 2001; Rimel et al., 1981; Binder et al., 
1997). 

Standard structural clinical neuroimaging studies demonstrate no 
abnormal findings for the majority of PCS patients as the clinical pre-
sentations of PCS are thought to be caused by cerebrovascular dysre-
gulation and neuronal dysfunction (Leddy et al., 2007; Giza et al., 2001; 
Ellis et al., 2015). However, functional MRI (fMRI), which uses blood 
oxygen-level dependent (BOLD) signaling, has shown abnormalities in 

patients with PCS (Giza et al., 2014; Eierud et al., 2014). 

1.1. Functional neuro-cognitive imaging (fNCI) 

Previous work (Allen et al., 2018) describes the development and use 
of a functional neuro-cognitive imaging (fNCI) protocol, based on the 
theory that dysregulated neurovascular coupling plays a dominant role 
in PCS, can be quantified through analysis of an abnormal BOLD signal 
pattern (Epps et al., 2017), and is used to identify biomarkers that serve 
to target interventions in PCS patients. 

This protocol, retroactively referred to as fNCI1, consists of a set of 
six neuro-cognitive exercises that are derivations of conventional neuro- 
psychological tests that have been redesigned for use inside of an MRI. 
Each of the tests employs a task-related design with several “active” 
phases where the subject is performing a cognitive task alternated with 
several “rest” phases where the subject is asked to count silently until the 
next active phase. 

In the fNCI1 pipeline, functional images were acquired during each 
test, were spatially smoothed with a FWHM Gaussian kernel, and were 
co-registered to a high-resolution T1-weighted structural image. A time- 
series analysis of covariance in SPM12 was used to test each voxel 
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against the null-hypothesis that changes in the BOLD signal in that voxel 
do not significantly correlate with the temporal sequencing of the active- 
rest cycle of the cognitive test. A neuro-anatomical expert defined the 
boundaries of several functional regions on the structural image, and the 
voxel with the strongest functional response in each region was marked 
as the “activation peak”. 

The distribution of activation peaks in all regions was assessed for 
normality among a set of control subjects, and used to assemble a three- 
dimensional activation standard, or normative atlas, which was then 
used as a benchmark to quantify and localize the individual PCS patient 
activation patterns. These patterns were then organized into a set of five 
discovered biomarkers and a total combined PCS Biomarker score 
(Fig. 1). 

1.2. Function neuro-cognitive imaging - Next Generation (fNCI2) 

fNCI1 was initially made available for clinical use through Notus 
Neurological Imaging in 2008 and has been in use at Cognitive FX since 
2014 to guide the treatment of several hundred PCS, Traumatic Brain 
Injury (TBI) and Acquired Brain Injury (ABI) patients. The next gener-
ation of fNCI intends to expand upon the original through the use of 
modern processing power, machine learning and statistical techniques, 
and advances in the understanding of functional neuro-anatomy. Spe-
cifically, the fNCI2 protocol intends to:  

• Decrease the required time to obtain a scan by combining the six tests 
into three.  

• Replace the need for a qualified neuro-anatomical expert to hand 
select functional region boundaries for each subject by developing an 
automated parcellation tool that can extract the regions of interest 
from a high-resolution 3D structural image that is co-registered to 
each individual’s functional image.  

• Improve the concept of the functional region ‘activation peak’ by 
using modern computational speed and machine-learning algorithms 
to analyze both individual and groups of voxels in each region.  

• Greatly expand the number of regions examined per test (from about 
6–10 to about 50).  

• Expand the analysis of the cognitive tests to include network analysis 
on top of the functional region response.  

• Organize the above into congruent ‘Functional Systems’, each of 
which performs a small specific task (eg. Target Search, Processing 
Speed, etc.…) to facilitate their use by neuro-cognitive therapists.  

• Completely automate the entirety of the above, with a reasonable 
computational run time, to allow for clinical use. 

The remainder of this paper is devoted to the first step of this process; 
the development of the machine-learning brain parcellation tool, 
‘AutoParc’. 

1.3. Automated parcellation 

Accurate parcellation of cortical brain regions and segmentation of 
subcortical brain structures is a crucial first step to the fNCI pipeline, as 
well as for the future study of various brain disorders including 
schizophrenia, Parkinson disease, and multiple-sclerosis. For the pur-
poses of the fNCI2 tool, ‘AutoParc’ must satisfy the following:  

• Obtain a full parcellation of the required cortical regions and 
subcortical structures.  

• Obtain a sufficiently accurate solution, one that will allow its use in 
obtaining the appropriate coarser-grid fMRI voxels, in a reasonable 
computational time on reasonable processing power such that it can 
be used in a clinical setting (ie ‘a few minutes’).  

• Accommodate individual variability in the cortical landmarks. 

Fig. 1. A brief summary of the fNCI1 report data, showing the activation peaks for each of the regions analyzed in each of the six neuro-cognitive tests (left), along 
with the summarized biomarker scores (middle) and total PCS score summary (right). 
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• Allow for rapid re-training on new labeled data as knowledge of 
cortical structures and activation patterns evolve through use at the 
clinic.  

• Extend the parcellation from the grey matter into the appropriate 
portions of adjacent white matter in order to include vascular 
structures that feed the cortical surface of a region, which is of 
critical importance for fMRI analysis.  

• Utilize a loss-function and/or other corrective measures during 
training to bias the solution towards the elimination of false positives 
among detected regions. (The coarse grid of the overlain fMRI is 
more forgiving to false negatives). 

A common approach to parcellation and segmentation is an atlas- 
based method, such as that available in the Freesurfer pipeline 
(Fischl, 2012). Atlas-based methods align one or several anatomical 
templates to the target image and then transfer segmentation and par-
cellation labeling from the template to the image. Due to the complex-
ities of the registration step(s), these methods typically suffer from 
prohibitively long computational run times, often struggle to capture 
complex local anatomical variabilities, and can fail in the presence of 
large deformations. 

Cortical-surface-based parcellation methods (Pantaxis et al., 2010) 
address local anatomical variabilities by treating the cortex as a con-
voluted surface and co-registering across subjects so that cortical land-
marks and features are aligned, however these methods typically still 
require the intervention of a skilled neuro-anatomical expert, and/or 
continue to suffer from long computational run times due to the regis-
tration steps. 

Supervised Deep Learning, most often in the form of Convolutional 
Neural Nets (CNNs) (LeCun et al., 1998), has become popular for both 
general, medical, and neural image segmentation. Unlike Atlas or Sur-
face methods that require the use of hand-crafted features, deep learning 
techniques learn hierarchical features by training on large sets of 
manually labeled data, and can often be parallelized to run on modern 
GPUs to obtain reasonable computational times. Neural Nets are typi-
cally composed of multiple layers of several types, such as convolutional 
and pooling, with parameters that are learned through 
back-propagation. Convolutional Neural Nets have the further advan-
tage of having layers that are connected to only a small number of units 
in adjacent layers which correspond to spatially localized regions, 
reducing the number of parameters in the net and limiting the compu-
tational requirements. 

U-Net structures (Çiçek et al., 2016), which consist of several con-
volutional layers serving as ‘encoders’ followed by several 
de-convolutional layers serving as ‘decoders” produce an output image 
of approximately the same size as the input, have demonstrated 
state-of-the-art performance on several general imaging tasks. While 
extension of this tool to 3D images is computationally straightforward, 
practical limitations have thus far prevented a 3D U-Net from learning a 
full-brain parcellation by directly training on high-resolution brain 
MRIs. These limitations include memory and computational speed lim-
itations, the low-number of available manually-labeled training sets, 
and the high number of labels. 

Several pieces of recent work attempt to navigate these limitations 
by using modifications of 2D methods. “ParcelCortex” (Thyreau et al., 
2020), uses 2D CNNs to reproduce parcellations on cortical ribbons. 
“DBPN” (Zhang et al., 2019), uses a two-stage deep network, consisting 
of a 2D coarse parcellation U-Net and a refinement network, to repro-
duce parcellations on a 2D cortical surface. “QuickNAT” (Roy et al., 
2019) consists of three 2D F-CNNs operating on coronal, axial and 
sagittal views followed by a view aggregation step to infer the final 
segmentation. ”FastSurfer” (Henschel et al., 2020) improves upon 
QuickNAT with the introduction of competition with each block, by 
replacing concatenation with maxout operations, and by the inclusion of 
a wider image context within each 2D-F-CNN by passing in neighboring 
slices instead of a single slice in order to retain a portion of the 3D 

information. 
A 3D CNN patch-based architecture (Dolz et al., 2018) consisting of 

several convolutional layers followed by several fully connected layers 
and a final classification layer showed good performance in classifying 
subcortical structures. The design used small kernels, allowing for a 
deeper architectures while maintaining reasonable computational 
times, and intermediate connections to maintain multi-scale informa-
tion. The loss of spatial information from the patching prevented its 
usefulness from expanding to cortical regions. 

DeepNAT (Wachinger et al., 2018) uses a similar design, several 
convolutional layers followed by several fully connected layers, to 
classify the center voxel in a patch along with its neighboring voxels by 
adding a 3D fully-connected conditional random field. While it is also 
demonstrated against subcortical structures only, the spatial context is 
retained in the patches by augmenting the inputs with coordinate 
information. 

SLANT (Huo et al., 2019) solves the problem of computational size 
by employing multiple independent 3D Fully Connected Networks 
(FCN), with each network being responsible for a particular spatial 
location before being joined in a label fusion technique. Similarly, 
AssemblyNet (Coupé et al., 2020) uses overlapping independently 
trained U-Nets, with certain U-Nets being initialized by their trained 
neighbors via transfer learning. Both methods show good results for 
cortical regions and subcortical structures. 

UnesT (Yu et al., 2023), uses a nested transformer, U-shaped model 
with a fast and simplified encoder design that enables local communi-
cation between adjacent patches using hierarchical aggregation, which 
preserves relative location information. The problem of a relatively 
small number of manually labeled sets is addressed by augmenting the 
data set with T1 scans labeled by existing multi-atlas segmentation 
models. 

In this work, we propose a simpler approach that utilizes a single U- 
Net to learn the entirety of the brain in a patch-based, sliding window 
method. The U-Net is relatively small compared to the size of the entire 
image and those used for SLANT and AssemblyNet, allowing both for the 
creation of a much deeper network architecture with small kernels, a 
greater number of filters, and a higher training batch size to improve 
convergence. Since the same U-Net will model multiple spatial locations, 
spatial concerns are addressed by encoding coordinate data into the 4th 
dimension and by using an input that is larger than the output. The 
single network aids in the problem of having a low number of training 
samples, as the training images are broken up into tens of thousands of 
training windows. The full brain is assembled by evaluating the U-Net on 
hundreds of overlapping windows, with each voxel being labeled by a 
majority vote. 

While the method described in this paper is tuned for application to 
the fNCI2, the overall approach is highly suitable for general purpose 
brain parcellation and segmentation. 

2. Methods 

2.1. Training data and pre-processing 

2.1.1. Labeled training data 
The Mindboggle-101 dataset (Klein et al., 2017) contains manually 

parcellated and labeled brain surfaces and volumes derived from MRIs 
of 101 healthy individuals. The data set consists of several groups 
(OASIS-TRT-20, NKI-TRT-20, HLN-12, Afterthought, MMRR-3T7T, 
MMRR-21, NKI-RS-22, and Twins-2) and uses two complementary la-
beling protocols; the ‘Desikan-Killiany-Tourville’ cortical labeling pro-
tocol (31 labels per hemisphere) and FreeSurfer’s 
non-cortical-plus-white-matter labels. We use the provided nifti vol-
umes for both the structural and labeled image in their original space for 
each group. 
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2.1.2. Label adjustment and combination 
Because automated parcellation is to be used to extract relevant 

features from a coarse-grid, overlain fMRI image and will be used by 
neuro-cognitive therapists to guide treatment, several adjustments are 
applied to the labels supplied by Mindboggle. 

The required adjustments fall into one of three types. First, regions 
shown in Table 1 maintain the same anatomical layout as in Mindboggle 
but have numbers re-ordered. Second the Mindboggle regions shown in 
Table 2 are combined to form new labeled regions. Finally, boundaries 
between certain regions are moved slightly. A frontal plane is extended 
at the anterior most point of the caudal anterior cingulate and used to 
divide the portion of the superior frontal gyrus that lies near the medial 
plane. The posterior portion is assigned to the caudal anterior cingulate 
and the anterior portion to the rostral anterior cingulate. Similarly, a 
frontal plane is extended at the anterior most point of the paracentral 
gyrus, dividing the posterior cingulate and assigning the anterior 
portion to the caudal anterior cingulate. While not required for the 
demonstration of the parcellation, these optional steps were included as 
a component of the larger study. A version of AutoParc trained without 
these custom boundary adjustments is included in the following 
analysis. 2.1.3. Dilations 

Because AutoParc is intended to be an optimal parcellation approach 
for fMRI studies, it is important that the output labeled region include 
not only the grey matter surface of a functional region, but also the white 
matter tissue approximately enclosed within the cortical surface mani-
fold(s) of each region. This allows for detection of surface vessels as well 
as supply vessels (e.g., penetrating arterioles) which contribute to the 
overall functional hyperemia measured from a typical region using 
reasonable voxel sizes for whole-brain fMRI BOLD detection. Specif-
ically, we perform a ‘closing’ iteration of magnitude 4 (ie dilating each 
region 4 times and then eroding each region 4 times to remove small 
internal holes) followed by 2 dilation iterations in the direction of the 
white matter and 1 dilation iteration in any direction that doesn’t 
contain white matter or another labeled region (Fig. 2). A version of 
AutoParc trained without these dilations is included in the following 
analysis. 

2.1.4. Rotation 
Each group of the Mindboggle-101 scans has the brain set in a 

different orientation of the i-j-k axis. For consistency, a rotation matrix is 
applied to each of the scans and the affines such that i-j-k has a 
consistent alignment with the sagittal-frontal-coronal directions. 

2.1.5. Bias field correction 
The T1 weighted image of each scan was corrected for the low- 

frequency intensity non-uniformity using the SimpleITK N4 Bias Field 
Correction (Beare et al., 2018). 

2.1.6. Brain extraction 
The brain was stripped from the skull and surrounding tissue using 

the open source “DeepBrain” extractor tool (Iitzco, 2018) by creating a 
probability mask and applying a cutoff of 0.5. The extracted brain is 
used to obtain the eigenvectors for the orientation (next step), which 
were then superimposed back onto the full images to continue the 
processing. 

2.1.7. Orientation and normalization 
To allow for consistency across different MRI hardware, the struc-

tural image of the extracted brain is normalized using the mean and 
standard deviation of the intensity of the voxels to a mean of 0 and 
standard deviation of 1. 

The affines were recomputed for consistency of size and alignment 
by first setting the origin to be at the center of mass, as determined from 
the intensity of the structural image of the extracted brain. Then, the 
inertial tensor of the extracted brain was calculated and used to obtain 
the eigenvectors (essentially using the intensity of each voxel as a 

Table 1 
Anatomical regions taken directly from Mindboggle with re-ordered 
label numbers.  

Label number Label name 

0 Unknown 
1 Left thalamus proper 
2 Right thalamus proper 
3 Left caudal anterior cingulate 
4 Left caudal middle frontal 
5 Left fusiform 
6 Left inferior parietal 
7 Left inferior temporal 
8 Left lateral occipital 
9 Left lateral orbitofrontal 
10 Left lingual 
11 Left medial orbitofrontal 
12 Left middle temporal 
13 Left paracentral 
14 Left pars orbitalis 
15 Left postcentral 
16 Left posterior cingulate 
17 Left precentral 
18 Left precuneus 
19 Left rostral anterior cingulate 
20 Left rostral middle frontal 
21 Left superior frontal 
22 Left superior parietal 
23 Left supramarginal 
24 Left insula 
25 Right caudal anterior cingulate 
26 Right caudal middle frontal 
27 Right fusiform 
28 Right inferior parietal 
29 Right inferior temporal 
30 Right lateral occipital 
31 Right lateral orbitofrontal 
32 Right lingual 
33 Right medial orbitofrontal 
34 Right middle temporal 
35 Right paracentral 
36 Right pars orbitalis 
37 Right postcentral 
38 Right posterior cingulate 
39 Right precentral 
40 Right precuneus 
41 Right rostral anterior cingulate 
42 Right rostral middle frontal 
43 Right superior frontal 
44 Right superior parietal 
45 Right supramarginal 
46 Right insula  

Table 2 
New regions consisting of compositions of Mindboggle regions.  

Label 
number 

Constituent labels New label name 

47 Left superior temporal, left transverse 
temporal 

Left superior temporal 

48 Right superior temporal, right transverse 
temporal 

Right superior temporal 

49 Left pars opercularis, left pars 
triangularis 

Left inferior frontal 
gyrus 

50 Right pars opercularis, right pars 
triangularis 

Right inferior frontal 
gyrus 

51 Left cuneus, left pericalcarine Left cuneus 
52 Right cuneus, right pericalcarine Right cuneus 
53 Left entorhinal, left parahippocampal Left parahippocampal 
54 Right entorhinal, right parahippocampal Right parahippocampal 
55 Left caudate, left putamen, left pallidum Left basal ganglia 
56 Right caudate, right putamen, right 

pallidum 
Right basal ganglia 

57 Left hippocampus, left amygdala Left hippocampus 
58 Right hippocampus, right amygdala Right hippocampus  
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discretized ‘mass’ for the inertial tensor calculation), which were then 
used to set the x, y, and z directions in the i, j, and k grid space. Finally, 
the size of the brain was non-dimensionalized to the width, which was 
determined as the furthest extent of the x-axis in both directions as 
measured from the center of mass. 

2.1.8. Encoding of orientation data 
Each of the training scans is to be broken down into a set of over-

lapping, sliding, 3D windows to generate the training images that will be 
fed into the neural net. In order to avoid the loss of spatial information, 
we encode the x,y,z data into the 4th dimension on the data. The method 
is similar to how color in two-dimensional images is represented by a 3rd 
dimension as [R,G,B] channels, but in our case we have a three- 
dimensional image with the 4th dimension as [Voxel-Intensity, X, Y, 
Z], with the latter three being produced from the new affine data 
generated in the orientation step. 

2.1.9. Generation of training windows 
Sliding windows of target size (27,27,27) voxels are swept across the 

training brains to generate the training images. Each window overlaps 
with the previous one by approximately 50 % in order to capture each 
voxel in approximately 8 different sliding windows. Further, the sliding 
window of the structural image is padded by 6 voxels on every side in 
order to capture information adjacent to the targeted voxel, giving a 
window size of (39, 39, 39) for the structural image sliding windows and 
(27, 27, 27) for the labeled image sliding windows. 

2.1.10. Filtering 
Given that a great deal of the generated sliding window images are 

likely to contain entirely or mostly ‘unknown’ labeled voxels, we scrub 
the majority of these in order to train the neural net to focus on the 
regions of interest. Specifically, we randomly scrub 95 % of the sliding 
window images that contain greater than 99.99 % ‘unknown’ voxels. We 
lose very little information this way, given that each voxel exists in 
approximately 8 different sliding windows. The entirety of the image 
pre-processing is shown in Fig. 3. 

2.2. Artificial neural net structure 

The goal of the artificial neural net structure is to learn the seg-
mentation provided by a set of manually labeled (27,27,27) voxel 
windows from the set of T1 image (39,39,39,4) windows. To this end, we 
constructed a U-Net architecture of the type commonly used in medical 
image segmentation. 

The U-Net is constructed using Google’s Tensorflow and consists of a 
set of 18 ‘Convolutional Blocks’ followed by 12 ‘Deconvolutional 
Blocks’. Each Convolutional Block consists of a 3D convolutional layer, a 
batch normalization layer, and an activation layer. Similarly, each 
Deconvolutional Block consists of a 3D transposed convolutional layer, a 
batch normalization layer, and an activation layer. Each block uses a 
kernel size of (3,3,3) and contains an increasing number of filters and 
decreasing window size as the layers reach deeper into the ‘U’. 

An input layer of the same dimensions as the training images 

Fig. 2. A section of cortical labels shown overlain on the structural image as provided by Mindboggle (left); after performing four closing iterations (center); and after 
performing 4 closing iterations, two dilation iterations into the white matter, and one dilation iteration into the remainder of the unlabeled space (right). 

Fig. 3. A summary illustration of the pre-processing steps. The MindBoggle labels are re-assembled into the desired combinations for training and aligned with their 
T1 structural images (A). The images are rough aligned for consistent i-j-k and then more finely aligned using the extracted brain eigenvectors, normalized to the 
width for consistent size, and the labels are dilated appropriately (B). Finally, the orientation data is encoded in the 4th dimension (illustrated here as a color sweep) 
and training windows are generated from the image (C). A 2D version of a 3D concept is shown for simplicity. 
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(39,39,39,4) followed by a batch normalization layer lies upstream of 
the first convolutional block. Each Convolutional Block accepts the 
outputs of the preceding block as its inputs (eg. Convolutional Block 12′s 
input is the output from Convolutional Block 11. Information flows 
down into the ‘U’) while each Deconvolutional Block accepts the outputs 
of both the preceding block and the Convolutional Block of equivalent 
dimensions as input (eg. Deconvolutional Block 12′s input is the sum of 
the output from Deconvolutional Block 13 and Convolutional Block 13. 
Information flows both up from the ‘U’ and across from the other side of 
the ‘U’). In this manner, both large scale and fine scale information is 
preserved. The last Deconvolutional Block has one final layer of size 
(27,27,27) with a Softmax activation attached (Fig. 4). 

Each training sample was fed into the U-Net in batches of size 24. The 
remaining hyperparameters consisted of an L2 regularization weight of 
1.0e-6, an exponential linear unit activation function, and the Adam 
optimizer (Table 3). 

A custom loss function, referred to as Combo Loss (CL), was designed 
consisting of a weighted combination of the sparse categorical cross 
entropy loss (SCCE) and the soft dice loss (SD) (Milletari et al., 2016) 

LossCL = (1 − w)⋅LossSCCE + w⋅LossSD 

SCCE typically has a faster convergence with a cleaner gradient, 
while the Dice Loss has a slower convergence, a more complicated 
gradient that is more likely to become unstable, but often obtains su-
perior results. The combination of the two can result in improved per-
formance during training, and the weighting of each has recently been 
tested in several papers. In this work, we use a custom weighting based 
on the current value of the SD during each training epoch, 

w =
(
1 − Loss2

SD

)

The end result is an initial fast convergence from the dominance of 
the SCCE, followed by a slower but more thorough convergence as the 
SD takes dominance in the later training epochs with the smaller SCCE 
remaining in the equation to serve as a stabilizing term. The combina-
tion of the two into a single loss function resulted in a smoother training 
history, and an improved total accuracy, while maintaining reasonable 
overall computational times. 

2.3. Training 

For training, we break up the 101 Mindboggle scans into randomly 
selected groups of 81, 10, and 10 for training, validating, and testing 
respectively. The overlapping window strategy produces 104,385 
training windows from the 81 training images and 13,438 validating 
windows from the 10 validating images. The back propagation algo-
rithm is applied to the training group while the validation group is used 
only to monitor convergence. Convergence is declared when the vali-
dation loss has not decreased in the last 10 epochs. 

Fig. 5 shows the time evolution of the training and validating Combo 
Loss, Soft Dice Loss, and Sparse Categorical Cross Entropy Loss. Mini-
mum Combo Loss occurs at epoch 47, and convergence is declared after 
training fails to find a new minimum by epoch 57. Fig. 6 shows the time 
evolution of the weights that contribute to the Combo Loss. The SCCE 
has a brief initial dominance before rapidly falling off, spending much of 
the time below 20 %, and from then on serving mainly as a stabilizing 
term to the gradient calculations during back-propagation. Since the 
process uses only a single “small‑but-deep” neural net to sweep the 3D 
image, training took only about 30 h on an Nvidia GeForce RTX 3070 Ti, 
satisfying the requirement for a tool that can be rapidly retrained as 
needed. 

Additional neural nets were trained in the same fashion in order to 
explore a subset of the parameter space. In addition to the above 
described net (‘AutoParc’), we trained a smaller net that uses an input 
window of 33 × 33 × 33 and omits the first three convolutional layers 
(‘AutoParc-Small’), a net that uses the Dice Loss only instead of the 
Combo Loss (‘AutoParc-Dice’), and a net that is trained on labels that 
have not been dilated or had any of the boundaries moved (‘AutoParc- 
Original’). Training and evaluation times were similar for all four. 

3. Results and discussion 

The remaining ten Mindboggle images that were set aside for testing 
produce an additional 13,647 sliding windows to evaluate the perfor-
mance of the model. Evaluating these windows directly through the U- 
Net to compare to the training and validating values reveals a compa-
rable Combo Loss (training = 0.378, validating = 0.417, testing =
0.398), Soft Dice Metric (training = 0.620, validating = 0.577, testing =

Fig. 4. . AutoParc’s U-Net structure, consisting on an Input Block (2D versions of the 3D input images shown for clarity), 18 Convolutional Blocks, 12 De- 
Convolutional Blocks, and a Softmax output layer. Each Conv/DeConv block consists of a Conv/DeConv layer, a batch normalization layer, and an activation layer. 
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0.598), and Sparse Categorical Accuracy (training = 0.933, validating =
0.912, testing = 0.924), suggesting that we have sufficient data for 
evaluation and that the model is sufficiently converged. 

For full comparison to the manually labeled images, the ten Mind-
boggle images are re-assembled from the sliding windows in a roughly 
reverse fashion to the window generation. Most individual voxels of the 
full image are represented in several sliding windows. The one-hot 
encoded value of each of these voxels consists of the average of the 
one-hot encoded values of its constituent voxels from the sliding win-
dows. A small Gaussian smoother is applied with a half-width of 0.5 
voxels in order to reduce any remaining spurious isolated single-voxel 
predictions (the effect of which is quite small, but serves to remove a 
few isolated single-voxel predictions in accordance with the view that 
false positives are more damaging to the eventual use in fMRI overlays 
than false negatives), and the maximum value of the one-hot encoded is 
selected as the prediction of the voxel. The Atlas-based FreeSurfer was 
run on the same 10 testing images for comparison. 

Fig. 7 shows a sample comparison of AutoParc vs Manual, AutoParc- 
Original vs Manual, and FreeSurfer vs Manual for qualitative compari-
son, showing good overall agreement between both predicted versions 

Table 3 
The block dimensions and hyperparameters for the U-Net architecture. The numbering convention of the de-convolutional blocks is such that the sizes match the 
convolutional blocks.  

Conv. Block # # of Filters Output window size Deconv. Block # # of filters Output window size Hyperparameter Value 

Input NA 39 × 39 × 39 × 4    Kernel Size 3 × 3 × 3 
1 25 37 × 37 × 37    Activation Fx ELU 
2 25 35 × 35 × 35    L2 Regularizer 1.00E-06 
3 25 33 × 33 × 33    Batch Size 24 
4 25 31 × 31 × 31    Patience 10 
5 25 29 × 29 × 29 Softmax Output NA 27 × 27 × 27   
6 25 27 × 27 × 27 6 25 27 × 27 × 27   
7 50 25 × 25 × 25 7 500 25 × 25 × 25   
8 50 23 × 23 × 23 8 500 23 × 23 × 23   
9 50 21 × 21 × 21 9 500 21 × 21 × 21   
10 100 19 × 19 × 19 10 100 19 × 19 × 19   
11 100 17 × 17 × 17 11 100 17 × 17 × 17   
12 100 15 × 15 × 15 12 100 15 × 15 × 15   
13 150 13 × 13 × 13 13 150 13 × 13 × 13   
14 150 11 × 11 × 11 14 150 11 × 11 × 11   
15 150 9 × 9 × 9 15 150 9 × 9 × 9   
16 200 7 × 7 × 7 16 200 7 × 7 × 7   
17 200 5 × 5 × 5 17 200 5 × 5 × 5   
18 200 3 × 3 × 3       

Fig. 5. Time evolution of the training and validating loss and components. The 
Combo Loss closely resembles the Soft Dice Loss in later epochs, with the SCCE 
serving mostly as a small stabilizing term. The best model is taken from the 
point of minimum loss, which occurs at epoch 47. 

Fig. 6. Time evolution of the individual weights for the SD and SCCE loss that 
comprise the Combo Loss. The SCCE has a brief initial dominance before 
serving as a small stabilizing term for the majority of the training. 

Fig. 7. A qualitative depiction of the performance of AutoParc (top left par-
cellated image), AutoParc-Original (no dilations or boundary corrections, 
middle left), and FreeSurfer (bottom left) against the equivalent manually- 
labeled images (right). 
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and manual labels, and between equivalent AutoParc-Original and 
FreeSurfer versions. Fig. 8 shows the quantitative testing results of the 
four versions of AutoParc. On the x-axis are the labels of the ten testing 
MindBoggle brains, with the y-axis showing the Dice Coefficient, of the 
predicted image compared to the manually labeled image. Each box plot 
represents the Dice Coefficient statistics for all 58 regions for one brain 
and one AutoParc version. 

DSC =
2|X ∩ Y|
|X| + |Y|

The full version of Autoparc has an average Dice Coefficient of 0.810 
for the 58 regions and 10 testing images. By comparison, the use of the 
Combo Loss resulted in only a small improvement in the Dice Coefficient 
(AutoParc-Dice=0.805) but did result in cleaner training with a 
smoother training and validating loss history, while the use of a larger 
T1 window size resulted in a larger improvement (AutoParc- 
Small=0.789), justifying the increased computational and memory costs 
associated with the selection. 

The largest difference is seen with the version of AutoParc trained on 
the 58 regions without any of the pre-processing dilations or boundary 
corrections (AutoParc-Original=0.778). This was an anticipated result, 
as the internal ‘holes’ in the defined regions are largely removed via the 
closing iterations, resulting in more of the predictive information being 
carried by the more robust normalized orientation data than the fine- 
scaled T1 intensity. The dilations, both into the white matter and into 
all ‘unknown’ voxels, serves both to remove some level of ambiguity in 
the boundary as well as to decrease the relative size differences between 
regions, which aids in the calculation of gradients during training. While 
these changes were made for usage reasons (ie the need to capture the 
vascular structure in fMRI analysis), it is worth noting that they also 
significantly improve the performance of AutoParc. 

Fig. 9 shows the testing results of each of the 58 regions in AutoParc, 
with each boxplot showing the statistics for the 10 testing images. The 
best performing regions, with an average Dice Coefficient of 0.897, are 
the subcortical structures, which have clearer defined boundaries and 
thus less ambiguity in the individual labeling samples. The cortical re-
gions have an average Dice Coefficient of 0.800. 

For comparison, the FreeSurfer predictions can be compared to the 
original version of the manual parcellation that does not include di-
lations or boundary corrections (Fig. 10). While the average Dice Co-
efficient is higher than that of AutoParc (0.857, obtained at the expense 
of a prohibitively long 4.5 h runtime, compared to under 3 min for 
AutoParc), the overall pattern of high agreement for the less ambiguous 
subcortical regions and a minority of regions (most notably the left and 
right pars orbitalis) standing out with low agreement appears similar to 
that of AutoParc. 

A direct comparison of AutoParc and FreeSurfer; Fig. 11, showing the 
Dice Coefficients comparing AutoParc-Original to FreeSurfer; is telling 
in that there appears to be a much tighter grouping of the Dice Co-
efficients around 0.80 despite the fact that AutoParc was trained against 
the manually-labeled samples and not FreeSurfer generated samples, 
with a reduction in the number of sub-0.50 dice regions from 7 (Auto-
Parc vs Manual) to 2 (AutoParc-Original vs FreeSurfer). This improved 
agreement between an existing high-accuracy Atlas-based method and 
the new modern U-Net method suggests that there is at least a certain 
amount of human-generated ambiguity in the labeling data that is un-
likely to be corrected by further algorithm refinement. 

Remaining sources of discrepancy include the tendency of neural 
networks to smooth small-scale segmentation noise and incorrect pro-
trusions that typically exist in only a few training images (Henschel 
et al., 2020), resulting in a region prediction that is more accurate than 
the manual, but has a lower Dice Coefficient. While both this and the 
other related human-generated ambiguity likely set an upper limit on 
the achievable Dice accuracy of new codes, the higher performance of 
FreeSurfer suggests that further algorithm improvement is still possible. 
Future research will attempt to address this with improved 
Convolutional-Deconvolutional block architectures, increased training 
data size (either with new available manual-labeled sample or with 
FreeSurfer generated samples), increased sliding window size combined 
with improved processing power, and/or innovative non-cubical sliding 
window geometries. 

Fig. 8. An illustration of the performance of four version of the AutoParc software on the ten Mindboggle images that were withheld for testing. In addition to the 
main AutoParc outlined in this paper (“AutoParc”, Average Testing Dice Coefficient = 0.810), these include a version using only the Soft Dice loss during training 
(“AutoParc-Dice”, 0.805), a version using a smaller T1 sliding window (“AutoParc-Small”, 0.789), and a version trained on the combined labels but without any 
dilations or inter-region boundary corrections (“AutoParc-Original”, 0.778). 
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4. Conclusions 

In this paper, we propose a U-Net architecture for parcellation of 
brain cortical regions and subcortical structures. We demonstrated that 
a single U-Net applied on a small sliding window is sufficient for the 
task, provided that it is of sufficient depth and has sufficient filters, 
allowing for training on tens of thousands of samples obtained from 101 
manually labeled samples. The requirement for a tool that can be rapidly 
retrained based on new learnings was satisfied by a novel loss function 
that improves the training performance, the need to retrain only the 
single U-Net, a small enough U-Net to fit on a GPU with a batch size of 24 
which increases training stability, and an evaluation procedure that 
produces the full image via voxel voting. Training the model on dilated 

and closed regions (and perhaps re-training as needed) allows the 
method to be used as the first step in the next generation functional 
Neuro-Cognitive Imaging tool. 
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